
Normalisation 1

Chapter 4.1
V3.0
Copyright @ Napier University
Dr Gordon Russell

Normalisation

• Overview
– discuss entity integrity and referential integrity
– describe functional dependency
– normalise a relation to first formal form (1NF)
– normalise a relation to second normal form

(2NF)
– normalise a relation to third normal form (3NF)

What is normalisation?

• Transforming data from a problem into relations while
ensuring data integrity and eliminating data redundancy.
– Data integrity : consistent and satisfies data constraint

rules
– Data redundancy: if data can be found in two places in a

single database (direct redundancy) or calculated using
data from different parts of the database (indirect
redundancy) then redundancy exists.

• Normalisation should remove redundancy, but not at the
expense of data integrity.

Problems of redundancy

• If redundancy exists then this can cause problems
during normal database operations:
– When data is inserted the database the data

must be duplicated where ever redundant
versions of that data exists.

– When data is updated, all redundant data must
be simultaneously updated to reflect that
change.

Normal forms

• The data in the database can be considered to be in one of a
number of `normal forms'. Basically the normal form of the
data indicates how much redundancy is in that data. The
normal forms have a strict ordering:
– 1st Normal Form
– 2nd Normal Form
– 3rd Normal Form
– BCNF

• There are more forms after BCNF. These are rarely utilised
in system design and are not considered further here.

Integrity Constraints

• An integrity constraint is a rule that restricts the values that
may be present in the database.

• entity integrity - The rows (or tuples) in a relation represent
entities, and each one must be uniquely identified. Hence we
have the primary key that must have a unique non-null value
for each row.

• referential integrity - This constraint involves the foreign
keys. Foreign keys tie the relations together, so it is vitally
important that the links are correct. Every foreign key must
either be null or its value must be the actual value of a key in
another relation.

Understanding Data

• Sometimes the starting point for understanding a problem’s
data requirements is given using functional dependencies.

• A functional dependency is two lists of attributes separated
by an arrow. Given values for the LHS uniquely identifies a
single set of values for the RHS attributes.

• Consider
R(matrix_no,firstname,surname,tutor_no,tutor_name)
tutor_no -> tutor_name
– A given tutor_no uniquely identifies a tutor_name.
– An implied daterminant is also present:

• matrix_no -> firstname,surname,tutor_no,tutor_name

Extracting understanding

• It is possible that the functional dependencies
have to be extracted by looking a real data from
the database. This is problematic as it is possible
that the data does not contain enough information
to extract all the dependencies, but it is a starting
point.

Example

B
D
C
D

Databases
Soft_Dev
ISDE
Workshop

21/08/1973Black, D960150

BDatabases09/01/1972Smith, J960145

A
B
C

Databases
Soft_Dev
Workshop

11/03/1970Moore, T960120

B
B

Soft_Dev
ISDE

10/05/1975White, A960105

C
A
D

Databases
Soft_Dev
ISDE

14/11/1977Smith, J960100
gradesubjectdate_of_birthNamematric_no

Student(matric_no, name, date_of_birth, (subject, grade))
name, date_of_birth -> matric_no

Flattened Tables

BWorkshop 21/08/1973Black, D960150

CISDE 21/08/1973Black, D960150

DSoft_Dev 21/08/1973Black, D960150

BDatabases21/08/1973Black, D960150

BDatabases09/01/1972Smith, J960145

CWorkshop11/03/1970Moore, T960120

BSoft_Dev11/03/1970Moore, T960120

ADatabases11/03/1970Moore, T960120

BISDE10/05/1975White, A960105

BSoft_Dev10/05/1975White, A960105

DISDE14/11/1977Smith, J960100

ASoft_Dev14/11/1977Smith, J960100

CDatabases14/11/1977Smith, J960100

gradeSubjectdate_of_birthnamematric_no

Repeating Group

• Sometimes you will miss spotting the repeating group, so
you may produce something like the following relation for the
Student data.

Student(matric_no, name, date_of_birth, subject, grade)
matric_no -> name, date_of_birth
name, date_of_birth -> matric_no

• Although this removed the repeating group, it has introduced
redundancy. However, using the redundancy removal
techniques of this lecture it does not matter if you spot these
issues or not, as the end result is always a normalised set of
relations.

First Normal Form

• First normal form (1NF) deals with the `shape' of the record.
• A relation is in 1NF if, and only if, it contains no repeating

attributes or groups of attributes.
• Example:

– The Student table with the repeating group is not in 1NF
– It has repeating groups, it is an `unnormalised table'.

• To remove the repeating group, either:
– flatten the table and extend the key, or
– decompose the relation- leading to First Normal Form

Flatten table and Extend Primary Key

• The Student table with the repeating group can be written as:
Student(matric_no, name, date_of_birth, (subject, grade))

• If the repeating group was flattened, as in the Student #2
data table, it would look something like:
Student(matric_no, name, date_of_birth, subject, grade)

• This does not have repeating groups, but has redundancy.
For every matric_no/subject combination, the student name
and date of birth is replicated. This can lead to errors:

Flattened table problems

• With the relation in its flattened form, strange anomalies
appear in the system. Redundant data is the main cause of
insertion, deletion, and updating anomalies.
– Insertion anomaly – at subject is now in the primary key,

we cannot add a student until they have at least one
subject. Remember, no part of a primary key can be
NULL.

– Update anomaly – changing the name of a student
means finding all rows of the database where that
student exists and changing each one separately.

– Deletion anomaly- for example deleting all database
subject information also deletes student 960145.

Decomposing the relation

• The alternative approach is to split the table into two parts, one
for the repeating groups and one of the non-repeating groups.

• the primary key for the original relation is included in both of the
new relations

Record Student

BWorkshop 960150

...... ...

BISDE960105

BSoft_Dev960105

DISDE960100

ASoft_Dev960100

CDatabases960100

gradesubjectmatric_no

21/08/1973Black,D960150

09/01/1972Smith,J960145

11/03/1970Moore,T960120

10/05/1975White,A960105

14/11/1977Smith,J960100

date_of_birthnamematric_no

Relations

• We now have two relations, Student and Record.
– Student contains the original non-repeating groups
– Record has the original repeating groups and the

matric_no

Student(matric_no, name, date_of_birth)
Record(matric_no, subject, grade)

• This version of the relations does not have insertion,
deletion, or update anomalies.

• Without repeating groups, we say the relations are in First
Normal Form (1NF).

Second Normal Form

• A relation is in 2NF if, and only if, it is in 1NF and every non-
key attribute is fully functionally dependent on the whole key.

• Thus the relation is in 1NF with no repeating groups, and all
non-key attributes must depend on the whole key, not just
some part of it. Another way of saying this is that there must
be no partial key dependencies (PKDs).

• The problems arise when there is a compound key, e.g. the
key to the Record relation - matric_no, subject. In this case it
is possible for non-key attributes to depend on only part of
the key - i.e. on only one of the two key attributes. This is
what 2NF tries to prevent.

Example

• Consider again the Student relation from the flattened
Student #2 table:

Student(matric_no, name, date_of_birth, subject, grade)
• There are no repeating groups, so the relation is in 1NF
• However, we have a compound primary key - so we must

check all of the non-key attributes against each part of the
key to ensure they are functionally dependent on it.
– matric_no determines name and date_of_birth, but not

grade.
– subject together with matric_no determines grade, but

not name or date_of_birth.
• So there is a problem with potential redundancies

Dependency Diagram

• A dependency diagram is used to show how non-
key attributes relate to each part or combination of
parts in the primary key.

Student

matric_no gradesubjectname date_of_bith

PKD

Fully Dependent

• This relation is not in 2NF
– It appears to be two tables squashed into one.
– the solutions is to split the relation into component parts.

• separate out all the attributes that are solely dependent on
matric_no - put them in a new Student_details relation, with
matric_no as the primary key

• separate out all the attributes that are solely dependent on
subject - in this case no attributes are solely dependent on
subject.

• separate out all the attributes that are solely dependent on
matric_no + subject - put them into a separate Student
relation, keyed on matric_no + subject

Student Details

All attributes in each relation are
fully functionally dependent upon
its primary key

These relations are now in 2NF

matrix_no name date_of_birth

Student

matrix_no subject grade

What is interesting is that this set of relations are the same
as the ones where we realised that there was a repeating
group.

Third Normal Form

• 3NF is an even stricter normal form and removes
virtually all the redundant data :

• A relation is in 3NF if, and only if, it is in 2NF and
there are no transitive functional dependencies

Third Normal Form

• Transitive functional dependencies arise:
– when one non-key attribute is functionally

dependent on another non-key attribute:
• FD: non-key attribute -> non-key attribute

– and when there is redundancy in the database
• By definition transitive functional dependency can

only occur if there is more than one non-key field,
so we can say that a relation in 2NF with zero or
one non-key field must automatically be in 3NF.

Example

32 High StreetBlack,B p4

32 High StreetBlack,B p3

11 New StreetSmith,J p2

32 High StreetBlack,B p1 Project has more than
one non-key field so we
must check for transitive
dependency:

addressmanagerproject_no

Extract

• Address depends on the value of manager.
• From the table we can propose:

Project(project_no, manager, address)
manager -> address

• In this case address is transitively dependent on
manager. The primary key is project_no, but the
LHS and RHS have no reference to this key, yet
both sides are present in the relation.

Fix

• Data redundancy arises from this
– we duplicate address if a manager is in charge

of more than one project
– causes problems if we had to change the

address- have to change several entries, and
this could lead to errors.

Fix

• Eliminate transitive functional dependency by splitting the
table
– create two relations - one with the transitive dependency

in it, and another for all of the remaining attributes.
– split Project into Project and Manager.

• the determinant attribute becomes the primary key in the
new relation - manager becomes the primary key to the
Manager relation

• the original key is the primary key to the remaining non-
transitive attributes - in this case, project_no remains the key
to the new Projects table.

Result

• Now we need to store the
address only once

• If we need to know a
manager's address we can
look it up in the Manager
relation

• The manager attribute is the
link between the two tables,
and in the Projects table it is
now a foreign key.

• These relations are now in
third normal form.

Black,B p4

Black,B p3

Smith,J p2

Black,B p1

managerproject_noProject

11 New StreetSmith,J

32 High StreetBlack,B

addressmanagerManager

Summary: 1NF

• A relation is in 1NF if it contains no repeating groups
• To convert an unnormalised relation to 1NF either:

– Flatten the table and change the primary key, or
– Decompose the relation into smaller relations, one for the

repeating groups and one for the non-repeating groups.
• Remember to put the primary key from the original

relation into both new relations.
• This option is liable to give the best results.

R(a,b,(c,d)) becomes
R(a,b)
R1(a,c,d)

Summary: 2NF

• A relation is in 2NF if it contains no repeating groups and no
partial key functional dependencies
– Rule: A relation in 1NF with a single key field must be in

2NF
– To convert a relation with partial functional dependencies

to 2NF. create a set of new relations:
• One relation for the attributes that are fully dependent

upon the key.
• One relation for each part of the key that has partially

dependent attributes
R(a,b,c,d) and a->c becomes

R(a,b,d) and R1(a,c)

Summary: 3NF

• A relation is in 3NF if it contains no repeating
groups, no partial functional dependencies, and no
transitive functional dependencies

• To convert a relation with transitive functional
dependencies to 3NF, remove the attributes
involved in the transitive dependency and put
them in a new relation

Summary: 3NF

• Rule: A relation in 2NF with only one non-key
attribute must be in 3NF

• In a normalised relation a non-key field must
provide a fact about the key, the whole key and
nothing but the key.

• Relations in 3NF are sufficient for most practical
database design problems. However, 3NF does
not guarantee that all anomalies have been
removed.

3NF continued

R(a,b,c,d)
c -> d

Becomes

R(a,b,c)
R1(c,d)

	Normalisation 1
	Normalisation
	What is normalisation?
	Problems of redundancy
	Normal forms
	Integrity Constraints
	Understanding Data
	Extracting understanding
	Example
	Flattened Tables
	Repeating Group
	First Normal Form
	Flatten table and Extend Primary Key
	Flattened table problems
	Decomposing the relation
	Relations
	Second Normal Form
	Example
	Dependency Diagram
	
	
	Third Normal Form
	Third Normal Form
	Example
	Extract
	Fix
	Fix
	Result
	Summary: 1NF
	Summary: 2NF
	Summary: 3NF
	Summary: 3NF
	3NF continued

